Classification of manifolds with weakly 1/4-pinched curvatures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Manifolds with Weakly 1/4-pinched Curvatures Simon Brendle and Richard Schoen

A classical theorem due to M. Berger [2] and W. Klingenberg [11] states that a simply connected Riemannian manifold whose sectional curvatures all lie in the interval [1, 4] is either isometric to a symmetric space or homeomorphic to Sn (see also [12], Theorems 2.8.7 and 2.8.10). In this paper, we provide a classification, up to diffeomorphism, of all Riemannian manifolds whose sectional curvat...

متن کامل

Classification of Almost Quarter-pinched Manifolds

We show that if a simply connected manifold is almost quarter pinched then it is di¤eomorphic to a CROSS or sphere.

متن کامل

Manifolds with Pointwise 1/4-pinched Curvature

In this lecture we will describe our recent joint work with SimonBrendle ([1], [2]) in which we give the differentiable classification ofcompact Riemannian manifolds with pointwise 1/4-pinched curvature.Our theorems are:Theorem 1. Let M be a compact Riemannian manifold with pointwise1/4-pinched curvature. Then M admits a metric of constant curvature,and therefore is ...

متن کامل

Kähler manifolds and fundamental groups of negatively δ-pinched manifolds

In this note, we will show that the fundamental group of any negatively δ-pinched (δ > 14) manifold can’t be the fundamental group of a quasi-compact Kähler manifold. As a consequence of our proof, we also show that any nonuniform lattice in F4(−20) cannot be the fundamental group of a quasi-compact Kähler manifold. The corresponding result for uniform lattices was proved by Carlson and Hernánd...

متن کامل

Geometric Finiteness in Negatively Pinched Hadamard Manifolds

In this paper, we generalize Bonahon’s characterization of geometrically infinite torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete torsionfree subgroups Γ of isometries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to prove that every such geometrically infinite isometry subgroup Γ has a set of nonconical limit points with cardi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 2008

ISSN: 0001-5962

DOI: 10.1007/s11511-008-0022-7